
Parse Me Baby One More Time: Bypassing
HTML Sanitizer via Parsing Differentials

David Klein

Institute for Application Security

Technische Universität Braunschweig

david.klein@tu-braunschweig.de

https://www.tu-braunschweig.de/ias
https://www.tu-braunschweig.de/
david.klein@tu-braunschweig.de

PhD Candidate
– At TU Braunschweig
– Group of Martin Johns

Research interests:

– Web Security
– Privacy
– Application Security

Soon on the Academic Job Market

2

About Me

PhD Candidate
– At TU Braunschweig
– Group of Martin Johns

Research interests:
– Web Security
– Privacy
– Application Security

Soon on the Academic Job Market

2

About Me

PhD Candidate
– At TU Braunschweig
– Group of Martin Johns

Research interests:
– Web Security
– Privacy
– Application Security

Soon on the Academic Job Market

2

About Me

Client-Side

document.write(location.hash);

Server-Side

<?php
echo $_GET["name"];

3

Cross Site Scripting (XSS)

Client-Side

document.write(location.hash);

Server-Side

<?php
echo $_GET["name"];

User Input
User Input

3

Cross Site Scripting (XSS)

Client-Side

document.write(location.hash);

Server-Side

<?php
echo $_GET["name"];

Reflection
Reflection

3

Cross Site Scripting (XSS)

Client-Side

document.write(location.hash);

Server-Side

<?php
echo $_GET["name"];

Such Code Patterns Are Everywhere!

3

Cross Site Scripting (XSS)

Client-Side

document.write(location.hash);

Server-Side

<?php
echo $_GET["name"];

Such Code Patterns Are Everywhere!

3

Cross Site Scripting (XSS)

Client-Side

Dynamic Taint Tracking

Server-Side

Less clear

SAST? DAST? Linter?

�: Investigate shared code

⇒⇒ Look at sanitizers!

4

Detecting XSS

Client-Side

Dynamic Taint Tracking

Project Foxhound

Server-Side

Less clear

SAST? DAST? Linter?

�: Investigate shared code

⇒⇒ Look at sanitizers!

4

Detecting XSS

https://github.com/SAP/project-foxhound

Client-Side

Dynamic Taint Tracking

Project Foxhound

Server-Side

Less clear

SAST? DAST? Linter?

�: Investigate shared code

⇒⇒ Look at sanitizers!

4

Detecting XSS

https://github.com/SAP/project-foxhound

Client-Side

Dynamic Taint Tracking

Project Foxhound

Server-Side

Less clear

SAST? DAST? Linter?

�: Investigate shared code

⇒⇒ Look at sanitizers!

4

Detecting XSS

https://github.com/SAP/project-foxhound

Client-Side

Dynamic Taint Tracking

Project Foxhound

Server-Side

Less clear

SAST? DAST? Linter?

�: Investigate shared code

⇒⇒ Look at sanitizers!

4

Detecting XSS

https://github.com/SAP/project-foxhound

Client-Side

Dynamic Taint Tracking

Project Foxhound

Server-Side

Less clear

SAST? DAST? Linter?

�: Investigate shared code

⇒⇒ Look at sanitizers!

4

Detecting XSS

https://github.com/SAP/project-foxhound

� Simply remove or change dangerous parts from the input

– Allow formatting tags to pass through, but remove everything dangerous
– E.g., →

This is called sanitization

5

Sanitization to Prevent XSS

� Simply remove or change dangerous parts from the input
– Allow formatting tags to pass through, but remove everything dangerous
– E.g., →

This is called sanitization

5

Sanitization to Prevent XSS

� Simply remove or change dangerous parts from the input
– Allow formatting tags to pass through, but remove everything dangerous
– E.g., →

This is called sanitization

5

Sanitization to Prevent XSS

� Simply remove or change dangerous parts from the input
– Allow formatting tags to pass through, but remove everything dangerous
– E.g., →

This is called sanitization

Definition: Sanitizer

Function taking arbitrary input and returns a safe value

The output shall resemble the input
⇒⇒ I.e., perserve benign parts

5

Sanitization to Prevent XSS

Researching people rolling their own sanitizers
E.g., trying to filter HTML with regular expressions

– I Spoke about this at RuhrSec in 2023

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, ""); }

How not to sanitize HTML

My takeaway: Use sanitizers relying on a real HTML parser

I.e., most server-side sanitizers

But does that really help?

6

My journey towards this research

Researching people rolling their own sanitizers
E.g., trying to filter HTML with regular expressions

– I Spoke about this at RuhrSec in 2023
function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, ""); }

How not to sanitize HTML

My takeaway: Use sanitizers relying on a real HTML parser

I.e., most server-side sanitizers

But does that really help?

6

My journey towards this research

Researching people rolling their own sanitizers
E.g., trying to filter HTML with regular expressions

– I Spoke about this at RuhrSec in 2023
function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, ""); }

How not to sanitize HTML

My takeaway: Use sanitizers relying on a real HTML parser

I.e., most server-side sanitizers

But does that really help?

6

My journey towards this research

Researching people rolling their own sanitizers
E.g., trying to filter HTML with regular expressions

– I Spoke about this at RuhrSec in 2023
function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, ""); }

How not to sanitize HTML

My takeaway: Use sanitizers relying on a real HTML parser

I.e., most server-side sanitizers

But does that really help?
6

My journey towards this research

7

Example Application

8

Example Application

9

Secure? No!

My test conference was hosted under hotcrp.com
⇒⇒ Shares login data with all conferences on hotcrp.com

– E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, . . .

By injecting custom JavaScript one can:

– Lure victim onto my conference page

▶ Simply spoof sender as stock@cispa.de or director@cispa.de

– Automatically log out visitor
– Exfiltrate username and password on log in

⇒⇒ See everything they have access to

10

Impact?

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

My test conference was hosted under hotcrp.com
⇒⇒ Shares login data with all conferences on hotcrp.com

– E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, . . .

By injecting custom JavaScript one can:

– Lure victim onto my conference page

▶ Simply spoof sender as stock@cispa.de or director@cispa.de

– Automatically log out visitor
– Exfiltrate username and password on log in

⇒⇒ See everything they have access to

10

Impact?

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

My test conference was hosted under hotcrp.com
⇒⇒ Shares login data with all conferences on hotcrp.com

– E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, . . .

By injecting custom JavaScript one can:

– Lure victim onto my conference page

▶ Simply spoof sender as stock@cispa.de or director@cispa.de

– Automatically log out visitor
– Exfiltrate username and password on log in

⇒⇒ See everything they have access to

10

Impact?

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

My test conference was hosted under hotcrp.com
⇒⇒ Shares login data with all conferences on hotcrp.com

– E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, . . .

By injecting custom JavaScript one can:

– Lure victim onto my conference page

▶ Simply spoof sender as stock@cispa.de or director@cispa.de

– Automatically log out visitor
– Exfiltrate username and password on log in

⇒⇒ See everything they have access to

10

Impact?

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

My test conference was hosted under hotcrp.com
⇒⇒ Shares login data with all conferences on hotcrp.com

– E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, . . .

By injecting custom JavaScript one can:
– Lure victim onto my conference page

▶ Simply spoof sender as stock@cispa.de or director@cispa.de

– Automatically log out visitor
– Exfiltrate username and password on log in

⇒⇒ See everything they have access to

10

Impact?

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

My test conference was hosted under hotcrp.com
⇒⇒ Shares login data with all conferences on hotcrp.com

– E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, . . .

By injecting custom JavaScript one can:
– Lure victim onto my conference page

▶ Simply spoof sender as stock@cispa.de or director@cispa.de

– Automatically log out visitor
– Exfiltrate username and password on log in

⇒⇒ See everything they have access to

10

Impact?

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

My test conference was hosted under hotcrp.com
⇒⇒ Shares login data with all conferences on hotcrp.com

– E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, . . .

By injecting custom JavaScript one can:
– Lure victim onto my conference page

▶ Simply spoof sender as stock@cispa.de or director@cispa.de

– Automatically log out visitor
– Exfiltrate username and password on log in

⇒⇒ See everything they have access to

10

Impact?

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

My test conference was hosted under hotcrp.com
⇒⇒ Shares login data with all conferences on hotcrp.com

– E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, . . .

By injecting custom JavaScript one can:
– Lure victim onto my conference page

▶ Simply spoof sender as stock@cispa.de or director@cispa.de

– Automatically log out visitor
– Exfiltrate username and password on log in

⇒⇒ See everything they have access to

10

Impact?

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

Input

11

Sanitization: Workflow

Input
1

2

3

4 5

6 7

Sanitizer

Parse

11

Sanitization: Workflow

Input
1

2

3

4 5

6 7

1

2 4 5

6 7

Sanitizer

Parse Clean

11

Sanitization: Workflow

Input
1

2

3

4 5

6 7

1

2 4 5

6 7

Output

Sanitizer

Parse Clean Serialize

11

Sanitization: Workflow

Input
1

2

3

4 5

6 7

1

2 4 5

6 7

Output 1

2 4 5

6 7

Sanitizer Application

Parse Clean Serialize Parse

11

Sanitization: Workflow

Input
1

2

3

4 5

6 7

1

2 4 5

6 7

Output 1

2 4 5

6 7

Sanitizer Application

Parse Clean Serialize Parse

Process

11

Sanitization: Workflow

HTML Code

<div>
<svg>...</svg>
<table>

<div>
<tbody></tbody>

</div>
</table>

<style>
Te</div>xt

</style>
</br>

</div>

DOM Tree

div

svg

div

table

tbodybr

img

style

#textbr

Parsed into

12

HTML Parsing Complexities

HTML Code

<div>
<svg>...</svg>
<table>

<div>
<tbody></tbody>

</div>
</table>

<style>
Te</div>xt

</style>
</br>

</div>

DOM Tree

div

svg

div

table

tbodybr

img

style

#textbr

Change to SVG parser

Parsed into

12

HTML Parsing Complexities

HTML Code

<div>
<svg>...</svg>
<table>

<div>
<tbody></tbody>

</div>
</table>

<style>
Te</div>xt

</style>
</br>

</div>

DOM Tree

div

svg

div

table

tbodybr

img

style

#textbr

Repair broken input

Parsed into

12

HTML Parsing Complexities

HTML Code

<div>
<svg>...</svg>
<table>

<div>
<tbody></tbody>

</div>
</table>

<style>
Te</div>xt

</style>
</br>

</div>

DOM Tree

div

svg

div

table

tbodybr

img

style

#textbr

Closes Automatically

Transformed to Opening Tag

Parsed into

12

HTML Parsing Complexities

HTML Code

<div>
<svg>...</svg>
<table>

<div>
<tbody></tbody>

</div>
</table>

<style>
Te</div>xt

</style>
</br>

</div>

DOM Tree

div

svg

div

table

tbodybr

img

style

#textbr

Script execution capabilities

Parsed into

12

HTML Parsing Complexities

HTML Code

<div>
<svg>...</svg>
<table>

<div>
<tbody></tbody>

</div>
</table>

<style>
Te</div>xt

</style>
</br>

</div>

DOM Tree

div

svg

div

table

tbodybr

img

style

#textbr

Different Parsing Mode

Parsed into

12

HTML Parsing Complexities

Input
1

2

3

4 5

1

2

3

4 5

Output 1

2

3

4 5

6 7

Parse Clean Serialize Parse

Process

13

Sanitization: Parsing Differential

Input
1

2

3

4 5

1

2

3

4 5

Output 1

2

3

4 5

6 7

Parse Clean Serialize Parse

Process

Different!

13

Sanitization: Parsing Differential

Payload: <select><iframe><script>payload()</script>

Parsed by Caja

#tag

select

#tag

iframe

#text

<script>payload()</script>

Parsed by Chrome

#tag

select

#tag

script

14

Parsing Differential to XSS

Payload: <select><iframe><script>payload()</script>

Parsed by Caja

#tag

select

#tag

iframe

#text

<script>payload()</script>

Parsed by Chrome

#tag

select

#tag

script

14

Parsing Differential to XSS

15

Root Cause

The “nothing” content model:

. . . the element must contain no Text nodes (other than

inter-element whitespace) and no element nodes.

However, the parsing specification disagrees:

⇒⇒ Inconsistency in the spec! One parsing quirk we identified

So the sanitizer is actually correct, but. . .

? Where has the iframe gone?

16

Root Cause

The “nothing” content model:

. . . the element must contain no Text nodes (other than

inter-element whitespace) and no element nodes.

However, the parsing specification disagrees:

content of iframe shall be parsed as text!

⇒⇒ Inconsistency in the spec! One parsing quirk we identified

So the sanitizer is actually correct, but. . .

? Where has the iframe gone?

16

Root Cause

The “nothing” content model:

. . . the element must contain no Text nodes (other than

inter-element whitespace) and no element nodes.

However, the parsing specification disagrees:

⇒⇒ Inconsistency in the spec! One parsing quirk we identified

div.innerHTML = `<iframe>`;

So the sanitizer is actually correct, but. . .

? Where has the iframe gone?

16

Root Cause

The “nothing” content model:

. . . the element must contain no Text nodes (other than

inter-element whitespace) and no element nodes.

However, the parsing specification disagrees:

⇒⇒ Inconsistency in the spec! One parsing quirk we identified

div.innerHTML = `<iframe>`;

ò Results in iframe element with payload as textual content.

No code execution!

So the sanitizer is actually correct, but. . .

? Where has the iframe gone?

16

Root Cause

The “nothing” content model:

. . . the element must contain no Text nodes (other than

inter-element whitespace) and no element nodes.

However, the parsing specification disagrees:

⇒⇒ Inconsistency in the spec! One parsing quirk we identified

So the sanitizer is actually correct, but. . .

? Where has the iframe gone?

16

Root Cause

The “nothing” content model:

. . . the element must contain no Text nodes (other than

inter-element whitespace) and no element nodes.

However, the parsing specification disagrees:

⇒⇒ Inconsistency in the spec! One parsing quirk we identified

So the sanitizer is actually correct, but. . .

? Where has the iframe gone?
16

Root Cause

Recall the payload:

<select><iframe><script>payload()</script>

The select Element

Content model:
Zero or more option, optgroup, and

script-supporting elements.

⇒⇒ An iframe can’t be a child of select!

So Chrome simply drops it

17

The Missing iframe

Recall the payload:

<select><iframe><script>payload()</script>

The select Element

Content model:
Zero or more option, optgroup, and

script-supporting elements.

ò “script-supporting elements” are script and template tags

⇒⇒ An iframe can’t be a child of select!

So Chrome simply drops it

17

The Missing iframe

Recall the payload:

<select><iframe><script>payload()</script>

The select Element

Content model:
Zero or more option, optgroup, and

script-supporting elements.

⇒⇒ An iframe can’t be a child of select!

So Chrome simply drops it
17

The Missing iframe

Google has deprecated Caja 5y+ ago

That does not stop others from using it, e.g.,:

–

–

18

Who Even Uses Google Caja?

Google has deprecated Caja 5y+ ago
That does not stop others from using it, e.g.,:

–

–

18

Who Even Uses Google Caja?

Google has deprecated Caja 5y+ ago
That does not stop others from using it, e.g.,:

–

–

18

Who Even Uses Google Caja?

Google has deprecated Caja 5y+ ago
That does not stop others from using it, e.g.,:

–

–

18

Who Even Uses Google Caja?

Root cause: Handling CDATA sections

– Same issue also affected Typo3

CDATA is a SGML construct

– <![CDATA[to emphasize]]>

However, CDATA is not allowed in HTML!

⇒⇒ The Browser will fix it for you!

19

Hotcrp Parsing Differential

Root cause: Handling CDATA sections
– Same issue also affected Typo3

CDATA is a SGML construct

– <![CDATA[to emphasize]]>

However, CDATA is not allowed in HTML!

⇒⇒ The Browser will fix it for you!

19

Hotcrp Parsing Differential

Root cause: Handling CDATA sections
– Same issue also affected Typo3

CDATA is a SGML construct

– <![CDATA[to emphasize]]>

However, CDATA is not allowed in HTML!

⇒⇒ The Browser will fix it for you!

19

Hotcrp Parsing Differential

Root cause: Handling CDATA sections
– Same issue also affected Typo3

CDATA is a SGML construct
– <![CDATA[to emphasize]]>

However, CDATA is not allowed in HTML!

⇒⇒ The Browser will fix it for you!

19

Hotcrp Parsing Differential

Root cause: Handling CDATA sections
– Same issue also affected Typo3

CDATA is a SGML construct
– <![CDATA[to emphasize]]>

However, CDATA is not allowed in HTML!

⇒⇒ The Browser will fix it for you!

19

Hotcrp Parsing Differential

Root cause: Handling CDATA sections
– Same issue also affected Typo3

CDATA is a SGML construct
– <![CDATA[to emphasize]]>

However, CDATA is not allowed in HTML!

⇒⇒ The Browser will fix it for you!

19

Hotcrp Parsing Differential

Root cause: Handling CDATA sections
– Same issue also affected Typo3

CDATA is a SGML construct
– <![CDATA[to emphasize]]>

However, CDATA is not allowed in HTML!

⇒⇒ The Browser will fix it for you!

The parser treats such CDATA sections (including lead-

ing ”[CDATA[” and trailing ”]]” strings) as comments.

19

Hotcrp Parsing Differential

<![CDATA[a<b]]> → <!--[CDATA[a<b]]-->

However, if the CDATA section contains >:

<![CDATA[<t>]]> → <!--[CDATA[<b--> <t>]]>

<![CDATA[]]> →
<!--[CDATA[<b-->]]>

20

Hotcrp Parsing Differential

<![CDATA[a<b]]> → <!--[CDATA[a<b]]-->

However, if the CDATA section contains >:

<![CDATA[<t>]]> → <!--[CDATA[<b--> <t>]]>

<![CDATA[]]> →
<!--[CDATA[<b-->]]>

20

Hotcrp Parsing Differential

<![CDATA[a<b]]> → <!--[CDATA[a<b]]-->

However, if the CDATA section contains >:

<![CDATA[<t>]]> → <!--[CDATA[<b--> <t>]]>

<![CDATA[]]> →
<!--[CDATA[<b-->]]>

20

Hotcrp Parsing Differential

<![CDATA[a<b]]> → <!--[CDATA[a<b]]-->

However, if the CDATA section contains >:

<![CDATA[<t>]]> → <!--[CDATA[<b--> <t>]]>

<![CDATA[]]> →
<!--[CDATA[<b-->]]>

20

Hotcrp Parsing Differential

Goal: Find Parsing Differentials to bypass HTML sanitizers

MutaGen: HTML payload generator

� Generate HTML that is difficult to parse

Important to keep in mind: HTML parsing never fails!

⇒⇒ Garbage in, DOM out

21

MutaGen

Goal: Find Parsing Differentials to bypass HTML sanitizers

MutaGen: HTML payload generator

� Generate HTML that is difficult to parse

Important to keep in mind: HTML parsing never fails!

⇒⇒ Garbage in, DOM out

21

MutaGen

Goal: Find Parsing Differentials to bypass HTML sanitizers

MutaGen: HTML payload generator

� Generate HTML that is difficult to parse

⇒⇒ It mutates during parsing

Important to keep in mind: HTML parsing never fails!

⇒⇒ Garbage in, DOM out

21

MutaGen

Goal: Find Parsing Differentials to bypass HTML sanitizers

MutaGen: HTML payload generator

� Generate HTML that is difficult to parse

⇒⇒ It mutates during parsing

Important to keep in mind: HTML parsing never fails!

⇒⇒ Garbage in, DOM out

21

MutaGen

Goal: Find Parsing Differentials to bypass HTML sanitizers

MutaGen: HTML payload generator

� Generate HTML that is difficult to parse

⇒⇒ It mutates during parsing

Important to keep in mind: HTML parsing never fails!

⇒⇒ Garbage in, DOM out

21

MutaGen

Generation Serialization

22

MutaGen: Payload Generation

Generation Serialization

Payload(Img tag)

22

MutaGen: Payload Generation

Generation Serialization

Payload(Img tag)

Close tag

(NoScript, Prepend)

22

MutaGen: Payload Generation

Generation Serialization

Payload(Img tag)

Close tag

(NoScript, Prepend)

Enclose tag attr (Div,

Id, Enclosed(Double))

22

MutaGen: Payload Generation

Generation Serialization

Payload(Img tag)

Close tag

(NoScript, Prepend)

Enclose tag attr (Div,

Id, Enclosed(Double))

Open tag

(NoScript, Prepend)

22

MutaGen: Payload Generation

Generation Serialization

Payload(Img tag)

Close tag

(NoScript, Prepend)

Enclose tag attr (Div,

Id, Enclosed(Double))

Open tag

(NoScript, Prepend)

⊥

22

MutaGen: Payload Generation

Generation Serialization

Payload(Img tag)

Close tag

(NoScript, Prepend)

Enclose tag attr (Div,

Id, Enclosed(Double))

Open tag

(NoScript, Prepend)

⊥

22

MutaGen: Payload Generation

Generation Serialization

Payload(Img tag)

Close tag

(NoScript, Prepend)
</noscript>

Enclose tag attr (Div,

Id, Enclosed(Double))

Open tag

(NoScript, Prepend)

⊥

22

MutaGen: Payload Generation

Generation Serialization

Payload(Img tag)

Close tag

(NoScript, Prepend)
</noscript>

Enclose tag attr (Div,

Id, Enclosed(Double))
<div id="</noscript>

">

Open tag

(NoScript, Prepend)

⊥

22

MutaGen: Payload Generation

Generation Serialization

Payload(Img tag)

Close tag

(NoScript, Prepend)
</noscript>

Enclose tag attr (Div,

Id, Enclosed(Double))
<div id="</noscript>

">

Open tag

(NoScript, Prepend)

⊥

<noscript>

<div id="</noscript>

">

22

MutaGen: Payload Generation

Generation Serialization

Payload(Img tag)

Close tag

(NoScript, Prepend)
</noscript>

Enclose tag attr (Div,

Id, Enclosed(Double))
<div id="</noscript>

">

Open tag

(NoScript, Prepend)

⊥

<noscript>

<div id="</noscript>

">

ò Highly effective Payload!

Bypasses 4 tested santizers

22

MutaGen: Payload Generation

⇒⇒ 11 sanitizers across five programming languages.

Java, JavaScript, PHP, Ruby, and .NET

23

Parsing Differentials in the Wild

Name Total Downloads Language Vulns.

DOMPurify 399 001 216
JavaScript

2
google caja 41 305 997 x

sanitize-html 276 882 692 0
HtmlSanitizer 19 800 000

.NET
2

HtmlRuleSanitizer 306 100 2
Typo3 html-sanitizer 1 950 185 PHP 4
rgrove/sanitize 60 928 006

Ruby
1

loofah 396 621 861 0
AntiSamy

No data available Java
3

JSoup 2

Total Over 1 Billion 16
24

Parsing Differentials in the Wild

During the first test, after like 10s, I was greeted by:

PHP Warning: Uninitialized string offset

26 in html5/src/HTML5/Parser/Scanner.php

on line 108

A target nobody has fuzzed before, i.e., good target!

25

Running MutaGen

During the first test, after like 10s, I was greeted by:

PHP Warning: Uninitialized string offset

26 in html5/src/HTML5/Parser/Scanner.php

on line 108

A target nobody has fuzzed before, i.e., good target!

25

Running MutaGen

⇒⇒ 11 sanitizers across five programming languages.

Java, JavaScript, PHP, Ruby, and .NET

All have functional deficiencies

– Average parsing similarity compared to browsers is below 60%
– Even if secure, sanitizers mangle input by parsing incorrectly

16 new bypass vectors across 9 of them

– And one bypass vector in a sanitizer not directly tested by us

26

Parsing Differentials in the Wild

⇒⇒ 11 sanitizers across five programming languages.

Java, JavaScript, PHP, Ruby, and .NET

All have functional deficiencies
– Average parsing similarity compared to browsers is below 60%

– Even if secure, sanitizers mangle input by parsing incorrectly

16 new bypass vectors across 9 of them

– And one bypass vector in a sanitizer not directly tested by us

26

Parsing Differentials in the Wild

⇒⇒ 11 sanitizers across five programming languages.

Java, JavaScript, PHP, Ruby, and .NET

All have functional deficiencies
– Average parsing similarity compared to browsers is below 60%
– Even if secure, sanitizers mangle input by parsing incorrectly

16 new bypass vectors across 9 of them

– And one bypass vector in a sanitizer not directly tested by us

26

Parsing Differentials in the Wild

⇒⇒ 11 sanitizers across five programming languages.

Java, JavaScript, PHP, Ruby, and .NET

All have functional deficiencies
– Average parsing similarity compared to browsers is below 60%
– Even if secure, sanitizers mangle input by parsing incorrectly

16 new bypass vectors across 9 of them

– And one bypass vector in a sanitizer not directly tested by us

26

Parsing Differentials in the Wild

⇒⇒ 11 sanitizers across five programming languages.

Java, JavaScript, PHP, Ruby, and .NET

All have functional deficiencies
– Average parsing similarity compared to browsers is below 60%
– Even if secure, sanitizers mangle input by parsing incorrectly

16 new bypass vectors across 9 of them
– And one bypass vector in a sanitizer not directly tested by us

26

Parsing Differentials in the Wild

What parser processes the output? Fragment or Document?

I.e., innerHTML assignment or document.write

Which browser is the result displayed in?

27

Parsing Accuracy #2

What parser processes the output? Fragment or Document?

I.e., innerHTML assignment or document.write

Which browser is the result displayed in?

27

Parsing Accuracy #2

What parser processes the output? Fragment or Document?

I.e., innerHTML assignment or document.write

Which browser is the result displayed in?

27

Parsing Accuracy #2

<svg><embed><iframe><desc>

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

Does this execute code?

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

context

svg

embed

iframe

#text

Chrome parsing result

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

context

svg

embed

iframe

#text

Chrome parsing result

ò Does Not Execute Code!

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

context

svg

embed

iframe

#text

Chrome parsing result

context

svg

embed

iframe

desc

img

Firefox parsing result

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

context

svg

embed

iframe

#text

Chrome parsing result

context

svg

embed

iframe

desc

img

Firefox parsing result

ò Executes Code!

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

context

svg

embed

iframe

#text

Chrome parsing result

context

svg

embed

iframe

desc

img

Firefox parsing result

⇒⇒ Perfectly accurate sanitizer is impossible
28

Browser Parsing Differentials

Input: <svg><style><keygen>

Output: <svg><style>

⇒⇒ Sanitizers can help to bypass other security measures!

29

DOMPurify to Aid Exploitation

Input: <svg><style><keygen>

Output: <svg><style>

⇒⇒ Sanitizers can help to bypass other security measures!

29

DOMPurify to Aid Exploitation

Input: <svg><style><keygen>

Output: <svg><style>

⇒⇒ Sanitizers can help to bypass other security measures!

29

DOMPurify to Aid Exploitation

Handling comments is surprisingly error prone. . .

– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses

– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

30

Common Problems

Handling comments is surprisingly error prone. . .
– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses

– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

30

Common Problems

Handling comments is surprisingly error prone. . .
– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses

– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

ò That is, comments terminated with --!>

30

Common Problems

Handling comments is surprisingly error prone. . .
– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses

– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

30

Common Problems

Handling comments is surprisingly error prone. . .
– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses
– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

30

Common Problems

Handling comments is surprisingly error prone. . .
– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses
– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

ò Sanitizing inputs containing noscript impossible!

30

Common Problems

Handling comments is surprisingly error prone. . .
– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses
– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

30

Common Problems

Handling comments is surprisingly error prone. . .
– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses
– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

ò Not correctly switching between different parsers.

Recall the Firefox bug shown earlier!

30

Common Problems

Handling comments is surprisingly error prone. . .
– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses
– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

30

Common Problems

Contact

david.klein@tu-braunschweig.de

ï leinea

� twitter.com/ncd_leen

Resources

§ ias-tubs/HTML_parsing_differentials

§ sap/project-foxhound

Closing

david.klein@tu-braunschweig.de
https://www.linkedin.com/in/leinea/
twitter.com/ncd_leen
ias-tubs/HTML_parsing_differentials
sap/project-foxhound

Parse → Serialize → Parse is prone to parsing
differentials

Server-Side HTML Sanitization is Insecure, Broken or
Both

A New Vision of Sanitization is Required to Get us
Out of This Mess

32

Main Takeaways

Parse → Serialize → Parse is prone to parsing
differentials

Server-Side HTML Sanitization is Insecure, Broken or
Both

A New Vision of Sanitization is Required to Get us
Out of This Mess

32

Main Takeaways

Parse → Serialize → Parse is prone to parsing
differentials

Server-Side HTML Sanitization is Insecure, Broken or
Both

A New Vision of Sanitization is Required to Get us
Out of This Mess

32

Main Takeaways

