Parse Me Baby One More Time: Bypassing
HTML Sanitizer via Parsing Differentials

David Klein

Institute for Application Security
Technische Universitat Braunschweig

david.klein@tu-braunschweig.de

,wILQ%
3% Technische

INSTITUTE FOR zo“;}&"
‘\ ‘\ 3 :% %3 Universitit
PR AL Braunschweig

I A S APPLICATION
SECURITY OF LARGE-SCALE ADVERSARIES Tomd

https://www.tu-braunschweig.de/ias
https://www.tu-braunschweig.de/
david.klein@tu-braunschweig.de

m PhD Candidate

— At TU Braunschweig
— Group of Martin Johns

m PhD Candidate

— At TU Braunschweig
— Group of Martin Johns
m Research interests:

— Web Security
— Privacy
— Application Security

m PhD Candidate

— At TU Braunschweig
— Group of Martin Johns
m Research interests:

— Web Security
— Privacy
— Application Security

m Soon on the Academic Job Market

Cross Site Scripting (XSS)

Client-Side Server-Side

document .write(location.hash) ; <?php
echo $_GET["name"];

Cross Site Scripting (XSS)

Client-Side Server-Side

document .write(location.hash) ; <?php
echo [F_GET["mame"T}

User Input
P User Input

Cross Site Scripting (XSS)

Client-Side Server-Side

|document.write[(location.hash); <?php

$_GET ["name"] ;
Reflection

Reflection

Cross Site Scripting (XSS)

Client-Side Server-Side

document .write(location.hash) ; <?php
echo $_GET["name"];

Such Code Patterns Are Everywhere!

Cross Site Scripting (XSS)

Client-Side Server-Side

document .write(location.hash) ; <?php
echo $_GET["name"];

Such Code Patterns Are Everywhere!

Hello, David

= EN~- Account & Lists ~

Detecting XSS
Client-Side Server-Side

m Dynamic Taint Tracking

Detecting XSS
Client-Side Server-Side

m Dynamic Taint Tracking

Project Foxhound

https://github.com/SAP/project-foxhound

Detecting XSS
Client-Side Server-Side

m Dynamic Taint Tracking m Less clear

Project Foxhound

https://github.com/SAP/project-foxhound

Detecting XSS
Client-Side Server-Side

m Dynamic Taint Tracking m Less clear
m SAST? DAST? Linter?

Project Foxhound

https://github.com/SAP/project-foxhound

Detecting XSS
Client-Side Server-Side

m Dynamic Taint Tracking m Less clear
m SAST? DAST? Linter?

m @ Investigate shared code

Project Foxhound

https://github.com/SAP/project-foxhound

Detecting XSS
Client-Side Server-Side

m Dynamic Taint Tracking m Less clear
m SAST? DAST? Linter?
m @ Investigate shared code

= Look at sanitizers!

Project Foxhound

https://github.com/SAP/project-foxhound

Sanitization to Prevent XSS

@ Simply remove or change dangerous parts from the input

Sanitization to Prevent XSS

@ Simply remove or change dangerous parts from the input

— Allow formatting tags to pass through, but remove everything dangerous
- E.g., —

Sanitization to Prevent XSS

@ Simply remove or change dangerous parts from the input

— Allow formatting tags to pass through, but remove everything dangerous
- E.g., —

m [his is called sanitization

Sanitization to Prevent XSS

@ Simply remove or change dangerous parts from the input

— Allow formatting tags to pass through, but remove everything dangerous
- E.g., —

m [his is called sanitization

Definition: Sanitizer

Function taking arbitrary input and returns a safe value

m The output shall resemble the input

= l.e., perserve benign parts

My journey towards this research

m Researching people rolling their own sanitizers

m E.g., trying to filter HTML with regular expressions
— | Spoke about this at RuhrSec in 2023

My journey towards this research

m Researching people rolling their own sanitizers

m E.g., trying to filter HTML with regular expressions

— | Spoke about this at RuhrSec in 2023
function f£(v) {
return v.replace(/'/g, "") .replace(/\(/g, "")
.replace(/\)/g, "") .replace(/alert/g, ""); *

How not to sanitize HTML

My journey towards this research

m Researching people rolling their own sanitizers

m E.g., trying to filter HTML with regular expressions

— | Spoke about this at RuhrSec in 2023
function f(v) {
return v.replace(/'/g, "") .replace(/\(/g, "")
.replace(/\)/g, "") .replace(/alert/g, ""); *

How not to sanitize HTML

m My takeaway: Use sanitizers relying on a real HTML parser

m |l.e., most server-side sanitizers

My journey towards this research

m Researching people rolling their own sanitizers

m E.g., trying to filter HTML with regular expressions

— | Spoke about this at RuhrSec in 2023
function f£(v) {
return v.replace(/'/g, "") .replace(/\(/g, "")
.replace(/\)/g, "") .replace(/alert/g, ""); *

How not to sanitize HTML

m My takeaway: Use sanitizers relying on a real HTML parser
m |l.e., most server-side sanitizers

m But does that really help?

Example Application

« > C @ QO B https://sec25cycle2.usenix.hotcrp.com ¥ Q sear
€ USENIX Sec '25 Cycle 2]

Welcome to the USENIX Security '25 (USENIX Sec '25 Cycle 2) submissions site. For general information, see https://www.usenix.org/conference/usenixsecurity25.

Your Submissions

Submitted
Submitted

The deadline for registering submissions has passed.

Example Application

« > C @ QO A https://sec25cyclelae.usenix.hoterp. com 7

& USENIX Security '25 Cycle-1 AE J

| Thank you for participating in the USENIX Security AE! Please note that this hotcrp instance is only for
| submitting the artifacts of papers which have been already accepted at the USENIX Security
| Conference . Please do not submit new research papers for reviews here

Before submitting an artifact, please check out the Call for Artifacts.

i Please note that for all papers that received a "Major Revision" / "Shepherding" decision at USENIX
| Security '25 (Cycle-1), the deadline to make your submissions for availability verification is Friday,
January 24 AoE . We will update the submission deadline in hotcrp after January 16 to reflect this.
Also note that the AE process is single-blind , so you do not need to anonymize your submission
(neither artifacts nor paper).

Welcome to the 34th USENIX Security Symposium (USENIX Security 25 Cycle-1 AE) submissions site. For general information, see https://www.usenix.org/conference, i ity25.

Your Submissions
New DO-NOT-SUBMIT submission | DO-NOT-SUBMIT deadline: Thursday Feb 13, 2025, 11:59:59 PM AcE (Feb 14 12:59:59 PM your time)

#58 HyTrack: Resurrectable and Persistent Tracking Across Android Apps and the Web & Badges: Available

Submit final versions of your accepted papers by Thursday Feb 13, 2025, 11:59:59 PM AoE (Feb 14 12:59:59 PM your time).

Secure? No!

v (2 TestConference x 4+

€ x % .hotcrp. com
TestConference hoterp.con says
s
! Hi there!

,,,,,,,,,,,,,,,,,,,

Welcome to the Test Conference (TestConference) submissions site.

Submissions

The deadline for registering submissions has passed.

Impact?

My test conference was hosted under hotcrp.com
=> Shares login data with all conferences on hotcrp.com

10

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

Impact?

My test conference was hosted under hotcrp.com

=> Shares login data with all conferences on hotcrp.com
— E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, ...

10

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

Impact?

My test conference was hosted under hotcrp.com

=> Shares login data with all conferences on hotcrp.com
— E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, ...

10

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

Impact?

My test conference was hosted under hotcrp.com

=> Shares login data with all conferences on hotcrp.com
— E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, ...

m By injecting custom JavaScript one can:

10

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

Impact?

My test conference was hosted under hotcrp.com

=> Shares login data with all conferences on hotcrp.com
— E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, ...

m By injecting custom JavaScript one can:
— Lure victim onto my conference page

10

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

Impact?

My test conference was hosted under hotcrp.com

=> Shares login data with all conferences on hotcrp.com
— E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, ...

m By injecting custom JavaScript one can:
— Lure victim onto my conference page
» Simply spoof sender as stock@cispa.de or director@cispa.de

10

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

Impact?

My test conference was hosted under hotcrp.com

=> Shares login data with all conferences on hotcrp.com
— E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, ...

m By injecting custom JavaScript one can:
— Lure victim onto my conference page
» Simply spoof sender as stock@cispa.de or director@cispa.de

— Automatically log out visitor
— Exfiltrate username and password on log in

10

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

Impact?

My test conference was hosted under hotcrp.com

=> Shares login data with all conferences on hotcrp.com
— E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, ...

m By injecting custom JavaScript one can:
— Lure victim onto my conference page
» Simply spoof sender as stock@cispa.de or director@cispa.de
— Automatically log out visitor
— Exfiltrate username and password on log in
=> See everything they have access to

10

hotcrp.com
hotcrp.com
stock@cispa.de
director@cispa.de

Input

Sanitization: Workflow

11

Sanitization: Workflow

Parse
lnp

O

©

Sanitizer

11

Sanitization: Workflow
Parse Clean
lnp

/LN
e me
6 ® @

Sanitizer

11

Sanitization: Workflow

Parse Clean %
lnpl;\/ﬁv Output

SN N
§oRTan
@ @ ©® ®@

Sanitizer

11

Sanitization: Workflow

Parse Clean Serializ Parse
lnp Outp
SN SN /TN
/\
© © ©

Sanitizer Application

11

Sanitization: Workflow

Parse Clean Serializ Parse
lnp Outp Process

SINC N A

/\

© © ©

Sanitizer Application

11

HTML Parsing Complexities

(HTML Code)

<div>
<svg>...</svg>
<table>
<div>
<tbody></tbody>
</div>
</table>

<style>
Te</div>xt
</style>
</br>
</div>

Parsed into

> (DOM Tree)

12

HTML Parsing Complexities
[HTML Code DOM Tree)

Parsed into

<Idiv> |
<svg>...</svg>
<table> —— Svg

<div> -
Stbody></tbody> Change to SVG parser —{dv)
</div>

</table>

ﬁ

 _

<style> %
Te</div>xt

</style> style

</br>

12

HTML Parsing Complexities

(HTML Code)

<div>
<svg>...</svg>
<table>

> (DOM Tree)

Parsed into

@)

<

svg

<tbody></tbody>
</div>
</table>

<style>
Te</div>xt
</style>
</br>
</div>

<div> —

Repair broken input |

12

HTML Parsing Complexities

(HTML Code)

<div>
<svg>...</svg>
<table>
<div>
<tbody></tbody>
</div>
</table>

Parsed into

<style>
Te</div>xt

</style>

Closes Automatically

> (DOM Tree)

</div>

Transformed to Opening Tag o

12

HTML Parsing Complexities
[HTML Code DOM Tree)

Parsed into
<div> Gﬁi}
<svg>...</svg>
<table> Svg
<div> :
<tbody></tbody> div
</div>
</savies

 tbody
| |
<style> —
Te</div>xt

</style> Script execution capabilit
</br>
</div>

12

HTML Parsing Complexities
[HTML Code DOM Tree)

Parsed into

<div> (div)

<

<svg>...</svg>
<table> svg
<div> _
<tbody></tbody>
</div>
</table>

 thody
 :
<Style> |mg
Te</div>xt |
</style> \ style
</br>
X
</div> (bt —>{ #text

Different Parsing Mode

12

Sanitization: Parsing Differential

Parse Clean % Parse
lnpp/\ Outp Process

/\ /\ /
§’a 0 g §oR

® © @

13

Sanitization: Parsing Differential

Parse Clean % Parse
lnppw

AN/ \
® @ @ ODifferent!@ @ .
i ok

3)

13

Parsing Differential to XSS

Payload: <select><iframe><script>payload()</script>

14

Parsing Differential to XSS

Payload: <select><iframe><script>payload()</script>

Parsed by Caja Parsed by Chrome

' #tag | #tag
select select
\ 4 \ 4

#tag #tag
iframe script

4

#ext
<script>payload()</script>

14

Root Cause

4.8.5 The iframe element

Categories:
Flow content.
Phrasing content.
Embedded content.
Interactive content.
Palpable content.

Contexts in which this element can be used:

Where embedded content is expected.

Content model:
Nothing.

15

Root Cause

The “nothing” content model:

...the element must contain no Text nodes (other than
inter-element whitespace) and no element nodes.

16

Root Cause

The “nothing” content model:

... the element [must contain no Text nodes| (other than

inter-element whitespace) and no element nodes.

m However, the parsing specification disagrees:
content of iframe shall be parsed as text!

16

Root Cause

The “nothing” content model:

... the element [must contain no Text nodes| (other than

inter-element whitespace) and no element nodes.

m However, the parsing specification disagrees:
=> Inconsistency in the spec! One parsing quirk we identified

16

Root Cause

The “nothing” content model:

...the element must contain no Text nodes (other than
inter-element whitespace) and no element nodes.

O Results in iframe element with payload as textual content.
No code execution!

L

- ~

AY
[div.innerHTML = ~<iframe>";|

16

Root Cause

The “nothing” content model:

...the element must contain no Text nodes (other than
inter-element whitespace) and no element nodes.

m However, the parsing specification disagrees:
=> Inconsistency in the spec! One parsing quirk we identified

m So the sanitizer is actually correct, but. ..

16

Root Cause

The “nothing” content model:

...the element must contain no Text nodes (other than
inter-element whitespace) and no element nodes.

m However, the parsing specification disagrees:
=> Inconsistency in the spec! One parsing quirk we identified

m So the sanitizer is actually correct, but. ..
? Where has the iframe gone?

16

The Missing iframe

Recall the payload:

<select><iframe><script>payload()</script>

17

The Missing iframe

Recall the payload:

<select><iframe><script>payload()</script>

The select Element

Content model:
Zero or more option, optgroup, and

[script-supporting elements|
~

T~

‘6 “script-supporting elements” are script and template tags

17

The Missing iframe

Recall the payload:

<select><iframe><script>payload()</script>

The select Element

Content model:
Zero or more option, optgroup, and
script-supporting elements.

=> An iframe can't be a child of select!

m So Chrome simply drops it
17

Who Even Uses Google Caja?

m Google has deprecated Caja by+ ago

18

Who Even Uses Google Caja?

m Google has deprecated Caja by+ ago
m That does not stop others from using it, e.g.,:

18

Who Even Uses Google Caja?

m Google has deprecated Caja by+ ago
m That does not stop others from using it, e.g.,:

_Ja\ Adobe

18

Who Even Uses Google Caja?

m Google has deprecated Caja by+ ago
m That does not stop others from using it, e.g.,:

_Ja\ Adobe

BSADAE

18

Hotcrp Parsing Differential
m Root cause: Handling CDATA sections

19

Hotcrp Parsing Differential
m Root cause: Handling CDATA sections

— Same issue also affected Typo3

19

Hotcrp Parsing Differential
m Root cause: Handling CDATA sections

— Same issue also affected Typo3

m CDATA is a SGML construct

19

Hotcrp Parsing Differential
m Root cause: Handling CDATA sections

— Same issue also affected Typo3

m CDATA is a SGML construct
— <I[CDATA[to emphasize]]>

19

Hotcrp Parsing Differential
m Root cause: Handling CDATA sections

— Same issue also affected Typo3

m CDATA is a SGML construct
— <I[CDATA[to emphasize]]>

m However, CDATA is not allowed in HTML!

19

Hotcrp Parsing Differential
m Root cause: Handling CDATA sections

— Same issue also affected Typo3

m CDATA is a SGML construct
— <I[CDATA[to emphasize]]>

m However, CDATA is not allowed in HTML!
=> The Browser will fix it for you!

19

Hotcrp Parsing Differential
m Root cause: Handling CDATA sections

— Same issue also affected Typo3

m CDATA is a SGML construct
— <I[CDATA[to emphasize]]>

m However, CDATA is not allowed in HTML!

=> The Browser will fix it for you!

The parser treats such CDATA sections (including lead-
ing "[CDATA[" and trailing "]]" strings) as comments.

19

Hotcrp Parsing Differential

B <!/[CDATA[a<b]]> — <!--[CDATA[a<b]]-->

20

Hotcrp Parsing Differential

B <![CDATA[a<b]]> — <!--[CDATA[a<b]]-->

m However, if the CDATA section contains >:

20

Hotcrp Parsing Differential

B <![CDATA[a<b]]> — <!--[CDATA[a<b]]-->

m However, if the CDATA section contains >:
W <! [CDATA[<t>]]> —» <!-—[CDATA[<b--><t>]]>

20

Hotcrp Parsing Differential

<![CDATA[a<b]]> — <!--[CDATA[a<b]]-->
However, if the CDATA section contains >:
<!'[CDATA[<t>]]> — <!--[CDATA[<b--><t>]]>

<! [CDATA[]]> —
<!--[CDATA[<b-->]]>

20

MutaGen

m Goal: Find Parsing Differentials to bypass HTML sanitizers

21

MutaGen

m Goal: Find Parsing Differentials to bypass HTML sanitizers

MutaGen: HTML payload generator

@ Generate HTML that is difficult to parse

21

MutaGen

m Goal: Find Parsing Differentials to bypass HTML sanitizers

MutaGen: HTML payload generator

@ Generate HTML that is difficult to parse
=> |t mutates during parsing

21

MutaGen

m Goal: Find Parsing Differentials to bypass HTML sanitizers

MutaGen: HTML payload generator

@ Generate HTML that is difficult to parse
=> |t mutates during parsing

m Important to keep in mind: HTML parsing never fails!

21

MutaGen

m Goal: Find Parsing Differentials to bypass HTML sanitizers

MutaGen: HTML payload generator

@ Generate HTML that is difficult to parse
=> |t mutates during parsing

m Important to keep in mind: HTML parsing never fails!
= Garbage in, DOM out

21

MutaGen: Payload Generation

Generation \ Serialization

22

MutaGen: Payload Generation

Generation

|

Payload(Img_tag)

|

Serialization

22

MutaGen: Payload Generation

Generation

|

Payload(Img_tag)

3

Close_tag
(NoScript, Prepend)

|

Serialization

22

MutaGen: Payload Generation

Generation

Serialization

Payload(Img_tag)

3

Close_tag
(NoScript, Prepend)

<4

Enclose tag attr (Div,
Id, Enclosed(Double))

22

MutaGen: Payload Generation

Generation

Serialization

Payload(Img_tag)

3

Close_tag
(NoScript, Prepend)

<4

Enclose tag attr (Div,
Id, Enclosed(Double))

3

Open_tag
(NoScript, Prepend)

22

MutaGen: Payload Generation

Generation

Serialization

Payload(Img_tag)

3

Close_tag
(NoScript, Prepend)

<4

Enclose tag attr (Div,
Id, Enclosed(Double))

3

Open_tag
(NoScript, Prepend)

T

L

22

MutaGen: Payload Generation

Generation

Serialization

Payload(Img_tag)

3

Close_tag
(NoScript, Prepend)

<4

Enclose tag attr (Div,
Id, Enclosed(Double))

3

Open_tag
(NoScript, Prepend)

T

L

22

MutaGen: Payload Generation

Generation

Serialization

Payload(Img_tag)

3

Close_tag
(NoScript, Prepend)

T

<4

</noscript>

Enclose tag attr (Div,
Id, Enclosed(Double))

3

Open_tag
(NoScript, Prepend)

T

L

22

MutaGen: Payload Generation

Generation

Serialization

Payload(Img_tag)

3

Close_tag
(NoScript, Prepend)

T

<4

</noscript>

Enclose tag attr (Div,
Id, Enclosed(Double))

3

3

<div id="</noscript>
">

Open_tag
(NoScript, Prepend)

T

L

22

MutaGen: Payload Generation

Generation

Serialization

Payload(Img_tag)

3

Close_tag
(NoScript, Prepend)

T

<4

</noscript>

Enclose tag attr (Div,
Id, Enclosed(Double))

3

3

<div id="</noscript>
">

Open_tag
(NoScript, Prepend)

3

T

L

<noscript>
<div id="</noscript>
">

22

MutaGen: Payload Generation

Generation \] Serialization
Payload (Img t| g . bnerror=f()>
- @ Highly effective Payload!
Close_tag . cript>
(NoScript, Prej DYPasses 4 tested santizers || = ..
T =7
Enclose tag attr (Div, <div id="</noscript>
Id, Enclosed(Double)) ">
T ¥
Open_tag <noscript>
(NoScript, Prepend) <div id="</noscript>
i’ | ">

Parsing Differentials in the Wild

=> 11 sanitizers across five programming languages.
m Java, JavaScript, PHP, Ruby, and .NET

23

Parsing Differentials in the Wild

Name Total Downloads Language Vulns.
DOMPurify 399001216 2
google caja 41305997 JavaScript x
sanitize-html 276882692 0
HtmlSanitizer 19800000 NET 2
HtmlIRuleSanitizer 306100 ' 2
Typo3 html-sanitizer ~ 1950185 PHP 4
rgrove/sanitize 60928 006 Rub 1
loofah 306621 861 A |
AntiSamy No data available Java 3
JSoup 2
Total Over 1 Billion 16

24

Running MutaGen

During the first test, after like 10s, | was greeted by:
PHP Warning: Uninitialized string offset
26 in html5/src/HTML5/Parser/Scanner. php
on line 108

25

Running MutaGen

During the first test, after like 10s, | was greeted by:

PHP Warning: Uninitialized string offset
26 in html5/src/HTML5/Parser/Scanner. php
on line 108

A target nobody has fuzzed before, i.e., good target!

25

Parsing Differentials in the Wild

=> 11 sanitizers across five programming languages.
m Java, JavaScript, PHP, Ruby, and .NET

m All have functional deficiencies

26

Parsing Differentials in the Wild

=> 11 sanitizers across five programming languages.
m Java, JavaScript, PHP, Ruby, and .NET

m All have functional deficiencies
— Average parsing similarity compared to browsers is below 60%

26

Parsing Differentials in the Wild

=> 11 sanitizers across five programming languages.
m Java, JavaScript, PHP, Ruby, and .NET

m All have functional deficiencies

— Average parsing similarity compared to browsers is below 60%
— Even if secure, sanitizers mangle input by parsing incorrectly

26

Parsing Differentials in the Wild

=> 11 sanitizers across five programming languages.
m Java, JavaScript, PHP, Ruby, and .NET

m All have functional deficiencies

— Average parsing similarity compared to browsers is below 60%
— Even if secure, sanitizers mangle input by parsing incorrectly

m 16 new bypass vectors across 9 of them

26

Parsing Differentials in the Wild

=> 11 sanitizers across five programming languages.
m Java, JavaScript, PHP, Ruby, and .NET

m All have functional deficiencies

— Average parsing similarity compared to browsers is below 60%
— Even if secure, sanitizers mangle input by parsing incorrectly

m 16 new bypass vectors across 9 of them
— And one bypass vector in a sanitizer not directly tested by us

26

Parsing Accuracy #2

What parser processes the output? Fragment or Document?

27

Parsing Accuracy #2

What parser processes the output? Fragment or Document?

|.e., innerHTML assignment or document.write

27

Parsing Accuracy #2

What parser processes the output? Fragment or Document?
|.e., innerHTML assignment or document.write

Which browser is the result displayed in?

27

Browser Parsing Differentials

<svg><embed><iframe><desc>

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

Does this execute code?

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

svg

Chrome parsing result

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

{6 Does Not Execute Code!}

svg

Chrome parsing result

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

svg
img
Chrome parsing result Firefox parsing result

28

Browser Parsing Differentials

<svg><embed><iframe><desc>

0 Executes Code|

svg
|frame

#text

Chrome parsing result Firefox parsing result

Browser Parsing Differentials

<svg><embed><iframe><desc>

svg

mg

Chrome parsing result Firefox parsing result

=> Perfectly accurate sanitizer is impossible

28

DOMPurify to Aid Exploitation

Input: <svg><style><keygen>

29

DOMPurify to Aid Exploitation

Input: <svg><style><keygen>

Output: <svg><style>

29

DOMPurify to Aid Exploitation

Input: <svg><style><keygen>
Output: <svg><style>

=> Sanitizers can help to bypass other security measures!

29

Common Problems

m Handling comments is surprisingly error prone. ..

30

Common Problems

m Handling comments is surprisingly error prone. ..
— Three sanitizers do not detect closing bang comments

30

Common Problems

m Handling comments is surprisingly error prone. ..
— Three sanitizers do not detect|closing bang comments|

[

[0 That is, comments terminated with ——! >}

30

Common Problems

m Handling comments is surprisingly error prone. ..
— Three sanitizers do not detect closing bang comments

m noscript is impossible to get right: four bypasses

30

Common Problems

m Handling comments is surprisingly error prone. ..
— Three sanitizers do not detect closing bang comments

m noscript is impossible to get right: four bypasses
— Parsing depends on internal browser state, not exposed to sanitizers

30

Common Problems

m Handling comments is surprisingly error prone. ..
— Three sanitizers do not detect closing bang comments

m noscript is impossible to get right: four bypasses
— Parsing depends on internal browser state,|not exposed to sanitizersl

/

© Sanitizing inputs containing noscript impossible!}

30

Common Problems

m Handling comments is surprisingly error prone. ..
— Three sanitizers do not detect closing bang comments

m noscript is impossible to get right: four bypasses
— Parsing depends on internal browser state, not exposed to sanitizers

m Namespace confusion bugs are common

30

Common Problems

m Handling comments is surprisingly error prone. ..
— Three sanitizers do not detect closing bang comments

m noscript is impossible to get right: four bypasses
— Parsing depends on internal browser state, not exposed to sanitizers

m [Namespace confusion bugs|are common

© Not correctly switching between different parsers.
Recall the Firefox bug shown earlier!

30

Common Problems

m Handling comments is surprisingly error prone. ..
— Three sanitizers do not detect closing bang comments

m noscript is impossible to get right: four bypasses
— Parsing depends on internal browser state, not exposed to sanitizers

m Namespace confusion bugs are common

m Some fundamental parsing bugs too!

30

Closing

% david.klein@tu-braunschweig.de

) leinea

W twitter.com/ncd_leen

Resources

() ias-tubs/HTML_parsing_differentials
() sap/project-foxhound

david.klein@tu-braunschweig.de
https://www.linkedin.com/in/leinea/
twitter.com/ncd_leen
ias-tubs/HTML_parsing_differentials
sap/project-foxhound

Main Takeaways

Parse — Serialize — Parse is prone to parsing
differentials

32

Main Takeaways

Parse — Serialize — Parse is prone to parsing
differentials

Server-Side HTML Sanitization is Insecure, Broken or
Both

32

Main Takeaways

Parse — Serialize — Parse is prone to parsing
differentials

Server-Side HTML Sanitization is Insecure, Broken or
Both

A New Vision of Sanitization is Required to Get us
Out of This Mess

32

